双指针模板
双指针技巧可以分为两类
- 「快慢指针」 解决主要解决链表中的问题,比如典型的判定链表中是否包含环
- 「左右指针」 后者主要解决数组(或者字符串)中的问题,比如二分查找、滑动窗口
一、快慢指针的常见算法
快慢指针一般都初始化指向链表的头结点 head,前进时快指针 fast 在前,慢指针 slow 在后,巧妙解决一些链表中的问题。
1、判定链表中是否含有环
这应该属于链表最基本的操作了,如果读者已经知道这个技巧,可以跳过。
单链表的特点是每个节点只知道下一个节点,所以一个指针的话无法判断链表中是否含有环的。
如果链表中不包含环,那么这个指针最终会遇到空指针 null 表示链表到头了,这还好说,可以判断该链表不含环。
1 | boolean hasCycle(ListNode head) { |
但是如果链表中含有环,那么这个指针就会陷入死循环,因为环形数组中没有 null 指针作为尾部节点。
经典解法就是用两个指针,一个每次前进两步,一个每次前进一步。如果不含有环,跑得快的那个指针最终会遇到 null,说明链表不含环;如果含有环,快指针最终会超慢指针一圈,和慢指针相遇,说明链表含有环。
1 | boolean hasCycle(ListNode head) { |
2、已知链表中含有环,返回这个环的起始位置
这个问题其实不困难,有点类似脑筋急转弯,先直接看代码:
1 | ListNode detectCycle(ListNode head) { |
可以看到,当快慢指针相遇时,让其中任一个指针重新指向头节点,然后让它俩以相同速度前进,再次相遇时所在的节点位置就是环开始的位置。这是为什么呢?
第一次相遇时,假设慢指针 slow 走了 k 步,那么快指针 fast 一定走了 2k 步,也就是说比 slow 多走了 k 步(也就是环的长度)。
设相遇点距环的起点的距离为 m,那么环的起点距头结点 head 的距离为 k - m,也就是说如果从 head 前进 k - m 步就能到达环起点。
巧的是,如果从相遇点继续前进 k - m 步,也恰好到达环起点。
所以,只要我们把快慢指针中的任一个重新指向 head,然后两个指针同速前进,k - m 步后就会相遇,相遇之处就是环的起点了。
3、寻找链表的中点
类似上面的思路,我们还可以让快指针一次前进两步,慢指针一次前进一步,当快指针到达链表尽头时,慢指针就处于链表的中间位置。
1 | ListNode slow, fast; |
当链表的长度是奇数时,slow 恰巧停在中点位置;如果长度是偶数,slow 最终的位置是中间偏右:
寻找链表中点的一个重要作用是对链表进行归并排序。
回想数组的归并排序:求中点索引递归地把数组二分,最后合并两个有序数组。对于链表,合并两个有序链表是很简单的,难点就在于二分。
但是现在你学会了找到链表的中点,就能实现链表的二分了。关于归并排序的具体内容本文就不具体展开了。
4、寻找链表的倒数第 k 个元素
我们的思路还是使用快慢指针,让快指针先走 k 步,然后快慢指针开始同速前进。这样当快指针走到链表末尾 null 时,慢指针所在的位置就是倒数第 k 个链表节点(为了简化,假设 k 不会超过链表长度):
1 | ListNode slow, fast; |
二、左右指针的常用算法
左右指针在数组中实际是指两个索引值,一般初始化为 left = 0, right = nums.length - 1 。
1、二分查找
前文 二分查找算法详解 有详细讲解,这里只写最简单的二分算法,旨在突出它的双指针特性:
1 | int binarySearch(int[] nums, int target) { |
2、两数之和
直接看一道 LeetCode 题目吧:
只要数组有序,就应该想到双指针技巧。这道题的解法有点类似二分查找,通过调节 left 和 right 可以调整 sum 的大小:
3、反转数组
1 | void reverse(int[] nums) { |
4、滑动窗口算法
如果掌握了此算法,可以解决一大类子字符串匹配的问题,详情参考滑动窗口一文。
参考: